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SUMMARY

Fractional-step methods solve the unsteady Navier–Stokes equations in a segregated manner, and can
be implemented with only a single solution of the momentum=pressure equations being obtained at each
time step, or with the momentum=pressure system being iterated until a convergence criterion is attained.
The time accuracy of such methods can be determined by the accuracy of the momentum=pressure cou-
pling, irrespective of the accuracy to which the momentum equations are solved. It is shown that the
time accuracy of the basic projection method is 5rst-order as a result of the momentum=pressure cou-
pling, but that by modifying the coupling directly, or by modifying the intermediate velocity boundary
conditions, it is possible to recover second-order behaviour. It is also shown that pressure correction
methods, implemented in non-iterative or iterative form and without special boundary conditions, are
second-order in time, and that a form of the non-iterative pressure correction method is the most e;cient
for the problems considered. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Time integration of the Navier–Stokes equations is often carried out by means of the fractional-
step procedure, 5rst suggested by Harlow and Welch [1] and Chorin [2]. With Chorin’s method
at each time step an incomplete form of the momentum equations is integrated to yield an
approximate velocity 5eld, which will in general not be divergence free, then a correction is
applied to that velocity 5eld to produce a divergence-free velocity 5eld. The correction to the
velocity 5eld is an orthogonal projection in the sense that it projects the initial velocity 5eld
onto the divergence-free 5eld without changing the vorticity. This step is called the projection
step, and schemes that use this approach are often called projection methods. The original
Chorin method was modi5ed for use with 5nite volumes de5ned on a staggered grid by Kim
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and Moin [3], and has since been used by many researchers for the simulation of unsteady
�ows [4]. The Harlow and Welch scheme led to the development of the SIMPLE scheme
of Patankar and Spalding [5]. This iterative scheme, which was initially applied to the fully
implicit steady-state Navier–Stokes equations, has since been applied very widely for both
steady and unsteady �ow.
In this paper we will investigate non-iterative semi-implicit schemes similar to that of Kim

and Moin. The Kim and Moin 5nite volume method drops the pressure gradient from the
momentum equations, which are integrated to obtain an intermediate velocity 5eld using an
approximate time split method. A Poisson equation is then solved for a form of the pressure,
which is used to correct the velocities and generate a divergence-free 5eld. The integration
then proceeds to the next time step. Considerable eHort has been expended on determining
appropriate boundary conditions for the intermediate velocity 5eld and the pressure Poisson
equation. The use of the physical velocity boundary conditions and zero normal pressure
gradient, as is normal with equivalent iterative schemes, can result in the scheme being 5rst-
order in time, irrespective of the time accuracy with which the momentum equations have
been solved. The original Kim and Moin scheme used a modi5ed second-order boundary
condition. Karniadakis et al. [6] showed that a boundary condition could be obtained for
the Poisson equation that resulted in second-order in time accuracy for a simpler projection
scheme, using spectral elements for the spatial discretization.
Perot [7] examined similar projection methods using an LU factorization scheme which

required no boundary conditions for the intermediate velocity and pressure, and showed that
the scheme was 5rst-order. Perot attributed the 5rst-order behaviour to a commutation error,
and suggested that this was an intrinsic feature of the projection method that could not be
generally remedied by modifying the boundary conditions. Perot proposed a modi5cation to
the LU factorization form of the projection method that produced second-order time accuracy.
An alternative method of obtaining second-order in time behaviour for projection meth-

ods has been suggested by a number of authors. These methods retain the pressure gradient
in the momentum equations, using the best available estimate for the pressure. A pressure
correction is then obtained simultaneously with the enforcement of the divergence-free con-
dition for the velocity 5eld. Both Van Kan [8] and Bell and Colella [9] have suggested and
analysed pressure correction methods of this type. The schemes of Van Kan and Bell and
Colella were non-iterative in the sense that the momentum and pressure correction equation
are only solved once at each time step. Van Kan presented results for the Navier–Stokes
equations showing that the pressure correction scheme was second-order in time while Bell
and Colella presented no time accuracy results. Gresho [10] carried out a detailed analysis
of projection methods in a 5nite element context, labelling the basic method in which the
pressure gradient is dropped from the momentum equations P1 and the pressure correction
method P2. It was demonstrated analytically that P1 with physical boundary conditions for the
intermediate velocity was 5rst-order in time whereas P2 was second-order in time. Guermond
and Quartapelle [11] also investigated P1 and P2 methods, focussing primarily on the eHect
of diHerent spatial discretizations, but again demonstrated the 5rst-order behaviour of the P1
method and the second-order behaviour of the P2 method. The pressure correction approach
can also be applied iteratively, whereby the momentum and pressure correction equation sys-
tem is solved repeatedly at each time step, ensuring that any error associated with the single
iteration is minimized. This approach was suggested by Tau [12], although it appears that
the results presented in that paper were actually obtained using the non-iterative method. Tau
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presented no time accuracy results. Dukowicz and Dvinsky [13] suggested an approximate
factorization method that was similar to the pressure correction methods cited above, and
demonstrated second-order time accuracy. Issa [14] suggested a fully implicit limited iteration
pressure correction method in the context of an unsteady scheme whereby two iterations of
the momentum, pressure correction equation system are carried out at each time step.
It is apparent that a range of projection=pressure correction methods have been developed

and are being used for the simulation of unsteady incompressible �ow, with a range of
taxonomies being used to categorize the schemes. In this paper we will investigate iterative
and non-iterative projection=pressure correction methods using a semi-implicit discretization in
which the advective terms are treated explicitly and the diHusive terms are treated implicitly,
following the Kim and Moin approach. The schemes will be labelled following the Gresho
taxonomy as follows:

• P1 projection: the basic projection method with the pressure gradient dropped from the
momentum equations and a single iteration of the momentum=pressure equation system
carried out at each time step.

• P2 pressure correction: the basic pressure correction method with a single iteration of
the momentum=pressure correction equation system carried out at each time step.

• Iterative: the pressure correction method with repeated iterations of the momentum=
pressure correction equation system carried out at each time step.

There has been little direct comparison of the accuracy and e;ciency of the P1, P2 and iter-
ative methods. While many of the authors cited earlier demonstrated the order of accuracy of
the schemes considered, few directly compared the accuracy of the methods and none consid-
ered the comparative e;ciency of the schemes. Recently Arm5eld and Street [15] compared
the accuracy and e;ciency of the P1 projection and P2 pressure correction methods with
an iterative method and demonstrated that the P2 pressure correction method is second-order
accurate in time and is the most e;cient of the methods considered. In the present paper we
considerably extend the previous work and investigate the time accuracy and e;ciency of the
P1 projection method, a modi5ed second-order P1 projection method based on Perot’s scheme,
the Kim and Moin P1 method, a P2 pressure correction method, and an iterative method. It is
shown that the 5rst-order projection error is a commutation error, as Perot noted, but that it
occurs only at the boundary and can be modi5ed by a change in boundary conditions for the
intermediate velocity, as suggested by Kim and Moin. The Kim and Moin boundary conditions
replace the 5rst-order error with a second-order error which is equivalent to the projection
error of the P2 pressure correction scheme in which standard boundary conditions are used
for the intermediate velocity 5eld. It is also shown that by implementing Kim and Moin-type
boundary conditions with the P2 pressure correction method, but using the pressure correction
rather than the pressure, the second-order projection error is replaced by a third-order error,
yielding the most accurate and e;cient scheme of those considered.

2. METHOD

The governing equations are the Navier–Stokes equations is unsteady incompressible non-
dimensional form,

ut + (u · ∇)u=−∇P +
1
Re

∇2u (1)
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∇ · u=0 (2)

where u is the velocity, P the pressure and Re the Reynolds number.
The continuous equations are discretized using Adams–Bashforth for the advective terms

and Crank–Nicolson for the diHusive terms, giving the system,

vn+1 − vn
Qt

+
[
3
2
H (vn)− 1

2
H (vn−1)

]
=−Gpn+1 +

1
2Re

L(vn+1 + vn) (3)

vn+1 = 0 (4)

where (v; p) are the discrete velocity and pressure respectively, H is the discrete advection
operator, G the discrete gradient, L the discrete Laplace operator and D the discrete divergence.
This is a second-order in time discretization, using an explicit scheme for the advection terms
and an implicit scheme for the diHusion terms [3]. Fractional-step methods integrate Equations
(3) and (4) in a segregated manner, that is the momentum equations are 5rst solved for the
velocity, and some form of Poisson equation is then solved for the pressure. The Poisson
equation is constructed from the momentum equation and the continuity equation and, as well
as providing the pressure, acts to enforce continuity.
The schemes considered in this paper 5rst obtain an estimate for the velocity at the n+ 1

time level, by solving an approximation of Equation (3), and then solving a Poisson equation
that is constructed by applying a correction to the estimated velocity 5eld by requiring that it
satis5es continuity. Of the methods to be considered the iterative pressure correction method
is the most general in the sense that it provides an exact solution to the discrete Equations
(3) and (4), at least to the degree of accuracy of the convergence criterion speci5ed. The
non-iterative P2 pressure correction method is functionally identical to the iterative pressure
correction method, but with the momentum and Poisson equations being solved only once at
each time step. The non-iterative P2 pressure correction method will not in general provide
an exact solution to the discrete equations, regardless of the accuracy to which the individual
equations are solved.
The P1 projection method is very similar to the P2 pressure correction method, but with

the pressure term neglected from the momentum equations. The Poisson equation, which in
the iterative and P2 pressure correction methods yields a pressure correction, provides a form
of the pressure in the P1 projection method. The three methods are described next.

2.1. Iterative method

In this method Equation (3) is solved, using the best current value for pn+1, to obtain v∗, an
approximation to vn+1, that is

v∗ − vn
Qt

+
[
3
2
H (vn)− 1

2
H (vn−1)

]
= −Gpn+1 +

1
2Re

L(v∗ + vn) (5)

This approximate velocity will not initially satisfy continuity. A correction is then applied of
the form,

vn+1 = v∗ −QtG� (6)
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Figure 1. Staggered grid, solid circles indicate pressure storage locations, horizontal arrows indicate
horizontal (U ) velocity locations and vertical arrows indicate vertical (V ) velocity locations. The solid

line is the domain boundary with y1 the exterior point and y2; y3; : : : interior points.

where � is a pressure correction, such that the resulting vn+1 does satisfy continuity. An
equation for � is constructed by substituting Equation (6) into the continuity Equation (4), to
give,

L�=Dv∗=Qt

Once � is obtained, the velocity is corrected and the pressure is updated using the pressure
correction as,

pn+1 =pn+1 + � (7)

Equation (5) is then solved again using the updated pressure to obtain a new estimate of the
velocity at the n + 1 time level, and that velocity again corrected to enforce continuity and
provide a pressure correction. This process is repeated until the integral over the domain of
the absolute divergence after the solution of Equation (5) is less than a prede5ned value. The
solution is then said to be converged and the integration continues to the next time step. For
the 5rst iteration at each time step pn+1 is set equal to pn.

At the completion of the time step the solution will satisfy both Equations (3) and (4),
to within the required convergence condition, and is therefore expected to be second-order
accurate in time, that is to have the same order of accuracy as that of the discretization of the
momentum equations. In practice, the scheme is most e;cient if it is not required that the
pressure correction step results in a velocity 5eld that satis5es the divergence-free condition
at each iteration, rather it is only required that the divergence error be reduced, and over a
number of momentum=pressure correction iterations the velocity will approach and satisfy the
divergence-free condition.

2.1.1. Boundary conditions. In the next section results are presented for �ows with three
types of boundary conditions:

• Fixed velocity boundaries: both the U and V velocity components are 5xed at a solid
wall or an inlet boundary. In this case the normal component of velocity, which has a
node on the boundary as shown in Figure 1, is set to the required value at that boundary,
while the tangential component, which does not have a node on the boundary, has the
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average of the values at the immediate interior and exterior nodes, set to the required
value. Because the normal component of velocity is known at the boundary no correction
is required to the ∗ 5eld there, and therefore the normal gradient of � is set to zero at
the boundary.

• Zero tangential shear boundaries: the normal component of velocity is set to zero and
the normal derivative of � is then also zero. The tangential velocity at the exterior node
is set equal to that at the immediate interior node.

• Outlet boundary: the �ow is assumed fully developed and the normal derivative of both
velocity components is set to zero. From Equation (6) the normal-second derivative of
� is set to zero.

The boundary conditions for the ∗ velocity 5eld are set to be the same as the physi-
cal boundary conditions, given above. No explicit boundary conditions are required for the
pressure.

2.2. P1 Projection methods

In these methods Equation (3) without the pressure gradient term is solved to obtain v∗, that
is

v∗ − vn
Qt

+
[
3
2
H (vn)− 1

2
H (vn−1)

]
=

1
2Re

L(v∗ + vn) (8)

Again this approximate velocity 5eld will not in general satisfy continuity and a correction
is applied of the form,

vn+1 = v∗ −QtG� (9)

such that the resulting vn+1 does satisfy continuity. An equation for � is constructed by
substituting Equation (9) into Equation (4), to give,

L�=Dv∗=Qt (10)

Once � is obtained, the velocity is corrected and the integration continues to the next time
step. In the P1 projection method it is necessary to solve the Poisson equation for � very
accurately to ensure that the velocity remains divergence free. At each time step � is initialized
using the previous time step value. This signi5cantly reduces the run time, by up to a factor
of two, when compared to the run time for � initialized to zero at each time step.
The basic P1 projection method uses the same boundary conditions for the ∗ velocity 5eld

and � as those given above in the iterative method for the ∗ velocity 5eld and �. The P1
projection method is thus a one-step method, and is therefore likely to require less computer
time per time step than the iterative method. However, it is not possible to obtain a pn+1

such that the 5nal (vn+1; pn+1) satis5es Equations (3) and (4) to within the convergence with
which each of the equations has been solved, as shown below.

2.2.1. Accuracy. The velocity 5eld vn+1, obtained using the projection method, will be di-
vergence free and satisfy the following approximation to the discrete momentum equations,

vn+1 − vn
Qt

+
[
3
2
H (vn)− 1

2
H (vn−1)

]
=−G�+

Qt
2Re

LG�+
1

2Re
L(vn+1 + vn) (11)
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which is obtained by substituting v∗= vn+1 + QtG� into Equation (8). For this to equal
Equation (3) above requires that

Gpn+1 =G�− Qt
2Re

LG� (12)

This will only be true if the right hand side can be expressed as the gradient of a scalar,
which requires that the operators L and G commute. In continuous form this is the case, and
it is also true in discrete form in the domain interior. However, it is not necessarily the case
for the tangential momentum equation at the node immediately interior to the boundary, as
will now be demonstrated.
We consider the U momentum equation at the (xi+1=2; y2) location as shown in

Figure 1. This is the location of the immediate interior tangential momentum equation, located
h=2 vertically from the boundary and between the Pi;2 and Pi+1;2 pressure nodes. Nodal �
values are located at pressure nodes. De5ning y=0 to be a zero velocity boundary then gives
the following physical boundary conditions for U;V and �

Vi;1+1=2 = 0; Ui+1=2;1 =−Ui+1=2;2; �i;1 =�i;2

Using the same boundary conditions for the ∗ velocity 5eld as the physical velocity, given
above, the boundary condition term U ∗

i+1=2;1 =−U n+1
i+1=2;2−QtQ�i+1=2;2=h. Writing the expression

for the y component of

Qt
2Re

LG�

explicitly for the U -momentum equation at the (xi+1=2; y2) node gives,

Qt
2Reh3

[Q�i+1=2;3 − 2Q�i+1=2;2 −Q�i+1=2;2] (13)

where Q�i+1=2; j=(�i+1; j−�i; j). Using the boundary condition �i;1 =�i;2 this expression may
be written as,

Qt
2Reh3

[Q�i+1=2;3 − 2Q�i+1=2;2 + Q�i+1=2;1]− Qt
Reh3

Q�i+1=2;1

The 5rst term in this expression will now commute to give GL�, while the second-term is
the error. The term

Q�i+1=2;1

h

is the 5nite diHerence form of �x at (xi+1=2; y1), and thus the error is of the form,

Qt
Reh2

�x

which occurs only at the j=2 node. Because this error occurs only at the boundary interior
node with a divisor of 1=h2 it is consistent and leads to an error in the interior of the form,

Qt�x
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This projection error is of order Qt indicating that even though a second-order in time diHer-
encing has been used for the momentum equations, the basic projection method is expected
to be only 5rst-order in time as a result of this additional error.
This error is entirely dependent on the form of the boundary conditions. If, for instance, a

zero tangential shear boundary condition is speci5ed then the boundary conditions are

Vi;1+1=2 = 0; Ui+1=2;1 =Ui+1=2;2; �i;1 =�i;2

and Equation (13) becomes,

Qt
2Reh3

[Q�i+1=2;3 − 2Q�i+1=2;2 + Q�i+1=2;1]

which will commute to give GL, and no error is produced. Perot [7] also observed that for
periodic boundary conditions no error occurs.
The error obtained above is a result of the implicit discretization of the diHusion terms,

and could be eliminated by utilizing an explicit discretization for these terms. However, a
severe restriction on the size of the time step is then necessary to ensure stability, and for
this reason an implicit discretization of the type used here is commonly employed. Results
in the next section are included for both the semi-implicit scheme given above and for the
fully explicit scheme in which Adams–Bashforth is used for both the advection and diHusion
terms.
The accuracy analysis above shows that the most accurate form of the pressure is obtained

from Equation (12) with L and G commuted, that is

pn+1 =�− Qt
2Re

L� (14)

However, a simpler form of the pressure is often used, that is,

pn+1 =� (15)

2.2.2. Kim and Moin method. Kim and Moin [3] derived a boundary condition for the ∗

velocity 5eld for 5xed velocity boundaries that removes the error obtained above that occurs
with the basic P1 projection method. Assuming zero velocity at the boundary their boundary
condition for the ∗ tangential velocity at the xi+1=2 location is,

U ∗
i+1=2;1 = −U ∗

i+1=2;2 +
2Qt
h

Q�ni+1=2;1

Similar conditions are applied for 5xed tangential velocity boundary conditions on all other
boundaries. Normal velocity boundary conditions remain the same as in the basic P1 projection
method, that is the physical boundary conditions are applied. Boundary conditions for �, which
depend on the normal velocity boundary conditions, therefore also remain as for the basic P1
projection method. The superscript n has been introduced to indicate the time location of �.
This is important as the single-step nature of the scheme means that the n level � must be
used in the tangential velocity boundary condition, whereas the n+ 1 level � is used for the
velocity correction.
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Substituting the Kim and Moin boundary conditions for the tangential velocity into the
tangential momentum equation at the (xi+1=2; y2) location, as above, gives an error of the
form

Qt
2Reh3

[Q�i+1=2;3 − 2Q�i+1=2;2 + Q�i+1=2;1]n+1 − Qt
Reh3

Q(�n+1
i+1=2;1 − �ni+1=2;1)

The 5rst term in this expression will commute to give GL� as required, and is thus part of
the pressure. The second term is similar to the error term in the basic P1 projection method,
but now depends on (�n+1 −�n), which is the 5nite diHerence form of Qt�t and is therefore
of order Qt. The overall error is therefore of the form

Qt2�tx (16)

which is second-order in time.
The boundary condition given above has been derived speci5cally for the 5xed tangential

velocity case and must be used with care when applied with other boundary conditions. For
instance if the following boundary condition,

U ∗
i+1=2;1 =U

∗
i+1=2;2 +

Qt
h
Q�ni+1=2;1 (17)

is used with a zero shear boundary, the substitution into the tangential momentum equation
gives,

Qt
2Reh3

[Q�n+1
i+1=2;3 − 2Q�n+1

i+1=2; j +Q�i+1=2;1]n+1 − Qt
Reh3

Q�ni+1=2;1

leading to a Qt error.
As noted above for the zero tangential shear the physical velocity boundary conditions

should be applied. Using the Kim and Moin approach it is therefore necessary to determine
appropriate tangential ∗ velocity boundary conditions for each case of physical boundary
conditions.
For the Kim and Moin method, as with the basic P1 projection method, the most accurate

form of the pressure is obtained as,

pn+1 =�− Qt
2Re

L� (18)

while the simpler form of the pressure, which is often used, is

pn+1 =� (19)

2.2.3. Perot. Perot [6] suggested a diHerent approach whereby a modi5cation to an LU fac-
torization scheme is used to remove the 5rst-order commutation error, adding an additional
term to the velocity correction given in Equation (9), obtaining,

vn+1 = v∗ −QtG�− Qt2

2Re
LG� (20)

This replaces the 5rst-order error with an equivalent but second-order error. To implement
this approach with the fractional step method requires that separate boundary conditions for
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the � gradient be speci5ed for each of the velocity components. For the correction applied
to the U component the � boundary conditions are speci5ed as �x=0 on all boundaries.
Conversely for the V component �y=0 on all boundaries.
Taking the divergence of this modi5ed velocity correction to obtain an equation for � leads

to a higher order equation with a large computational stencil. Rather than solving this equation,
the standard Poisson equation for �, Equation (10), is treated as an equation for a � correction.
This equation is solved and the resulting � is then used to correct the velocity as given in
Equation (12), � is set to zero and then the divergence of the corrected velocity used as the
source for another solution of the � equation, and the process repeated until the divergence
satis5es the convergence condition. The boundary conditions for the � Poisson equation are
the same as those for the basic P1 projection method; the special conditions given above are
only applied when the velocity is corrected. This iterative approach to the solution of the
modi5ed � equation converges rapidly and leads to a much simpler computational scheme.

2.3. P2 pressure correction method

The pressure correction method is identical to the iterative method, but with only a single
iteration carried out at each time step. The discrete momentum equation is solved to obtain
v∗, that is

v∗ − vn
Qt

+
[
3
2
H (vn)− 1

2
H (vn−1)

]
= −Gpn + 1

2Re
L(v∗ + vn)

using the nth time-level pressure, as with the 5rst iteration of the iterative method. The v∗

5eld is then corrected to satisfy continuity and the pressure corrected in exactly the same way
as in the iterative method. As the P2 pressure correction equation is only solved once each
time step, it is necessary in the P2 pressure correction method to obtain an accurate solution
of the Poisson equation, in the same way as the P1 projection method requires an accurate
solution for �.

2.3.1. Accuracy. The velocity 5eld vn+1, obtained using the pressure correction method, will
satisfy the following approximate form of the momentum equations.

vn+1 − vn
Qt

+
[
3
2
H (vn)− 1

2
H (vn−1)

]
=−G(pn + �) + Qt

2Re
LG�

+
1

2Re
L(vn+1 + vn) (21)

For this to equal Equation (3) requires that,

pn+1 =G(pn + �)− Qt
2Re

LG�

which again requires that L and G commute, and the n+ 1 pressure then becomes,

pn+1 =pn + �− Qt
2Re

L�
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However, for 5xed tangential velocity boundary conditions substitution of U ∗ into the imme-
diate interior node momentum equation shows that the discrete L and G will not commute,
exactly as for the basic P1 projection method, and the error is of the form,

Qt
Re
LG�

This error is similar to that obtained with the P1 projection method, but is now dependent
on the pressure correction � rather than the pseudo-pressure, �. As � is an approximation of
Qtpt , the overall error will be of the form,

Qt2ptx (22)

and is second-order in time.
This error is very similar to that obtained for the Kim and Moin boundary condition and

thus the two schemes are expected to perform similarly. A form of the Kim and Moin
boundary condition can be used with the pressure correction method, whereby for a zero
velocity boundary the tangential velocity is set to,

U ∗
i+1=2;1 =−U ∗

i+1=2;2 +
2Qt
h

Q�ni+1=2;1 (23)

in which case the error will be of the form,

Qt(�n+1
x − �nx)

and is expected to be third-order in time. This is similar to the optimal P2 method suggested
in Reference [10].
The most accurate pressure obtained with the pressure correction method is,

pn+1 =pn + �− Qt
2Re

L� (24)

while the simpler form uses

pn+1 =pn + � (25)

2.4. Discretization

The above schemes are de5ned on the standard MAC staggered grid using 5nite volumes,
with standard second-order central diHerences used for the viscous terms, the pressure gradient
and divergence terms. The QUICK third-order upwind scheme is used for the advective terms
[16]. The momentum equations are inverted using an ADI scheme in which terms are shifted
to the right hand side of the system to enable a series of tridiagonal matrices to be inverted
in each direction. The terms shifted to the right hand side contain the latest available estimate
for the unknown, allowing the domain to be repeatedly swept until an accurate solution
is obtained. For all the methods tested four sweeps of the ADI solver were used, where
a single sweep consists of solving the series of tridiagonal systems associated with each
coordinate direction once. Four sweeps of the solver gave solutions with residuals of less
than 1× 10−8 for all cases. Reducing the number of sweeps to one reduced the run time
by a maximum of 10 per cent, for the iterative solver, while also marginally reducing the
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accuracy of the 5nal solution. A preconditioned restarted GMRES method is used to solve
the Poisson � and pressure correction equations for all the methods. Other solvers, such as
preconditioned conjugate gradient, incomplete LU, ADI and Jacobi have also been tested and
found not to aHect the overall accuracy or relative performance of the methods. Of the solvers
tested GMRES was found to be the most e;cient. The number of sweeps of the GMRES
solver used varied with each of the methods tested and with the time-step and convergence
criterion prescribed. For the non-iterative schemes for the smallest convergence criterion up
to a hundred sweeps were required while for the largest convergence criterion as few as 5ve
were su;cient. For the iterative scheme the Poisson solver was limited to 5ve sweeps as
described in the next section. In all cases tested the majority of the computational time was
used solving the Poisson � and pressure correction equations, varying from slightly more than
50 per cent for the iterative solver with the largest time-step and convergence criterion to 95
per cent for the duct �ow with the smallest time step and convergence criterion.

3. RESULTS

Results have been obtained for natural convection cavity �ow, driven cavity �ow and symmet-
ric duct �ow. Natural convection and driven cavity �ows are standard benchmarks that have
been used extensively for testing the convergence and accuracy of Navier–Stokes solvers.
Symmetric duct �ow has been included as an example of a problem with free tangential
shear on one boundary. All results presented were obtained using double precision on a
DEC 3000-700.

3.1. Natural convection results

Initially the �uid in the square cavity is stationary and isothermal at temperature T =0. At
time t=0 the left and right walls are instantaneously heated and cooled to QT=2 and −QT=2
respectively, with the top and bottom boundaries adiabatic. All boundaries are no-slip. The
control parameters for this �ow are the Rayleigh number Ra and the Prandtl number Pr. The
Rayleigh number Ra= g�QTH 3=��, with g gravity, � the coe;cient of thermal expansion,
H the height of the cavity, � the kinematic viscosity and the di;sivity �= �=Pr. The results
presented were obtained with Ra=6× 105 and Pr=7:5.
The two-dimensional equations are used with x the horizontal co-ordinate, U the corre-

sponding horizontal velocity component, y the vertical coordinate and V the corresponding
vertical velocity component. The natural convection �ow requires the inclusion and solution of
a temperature equation, in addition to the Navier–Stokes equations. The temperature equation
is solved using Adams–Bashforth and Crank–Nicolson schemes in exactly the same manner
as the momentum equations, and for brevity is not presented. Further details of the natural
convection �ow may be found in Patterson and Arm5eld [17] and Arm5eld and Patterson
[18], and for brevity will not be presented here.
A 50× 50 uniform mesh has been used. The 50× 50 solution was compared to that obtained

on a 200× 200 mesh and the variation was found to be less than 1 per cent. The 50× 50
mesh is therefore considered to provide a su;ciently accurate resolution for this �ow. To test
the behaviour of the methods the �ow was integrated from t=0 to t=2 for time steps in the
range Qt=0:003125 to 0:1, and the ‘error’ expressed as the L2 norm of the diHerence between
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a test solution obtained at a given Qt and a benchmark solution obtained with a time step of
Qt=7:8125× 10−4, also integrated from t=0 to t=2. Times have been non-dimensionalized
using the boundary layer start-up time for the natural convection cavity. Total time to steady
state for the cavity is orders of magnitude greater than the boundary layer start-up time. The
maximum time step selected, Qt=0:1, was chosen to be near to the empirically obtained
stability limit of Qt=0:2 for the P1 projection, P2 pressure correction and iterative methods.
The Perot and explicit methods are less stable and were restricted to a maximum time step
of Qt=0:025.
For each of the methods and time steps results have been obtained with convergence cri-

terion ranging from 1:0× 10−4 to 1:0× 10−9 in order-of-magnitude steps. The solution was
considered converged at each time step when the integral over the domain of the absolute
residual of the continuity equation was less than the convergence criterion. In this way it was
possible to determine which was the appropriate convergence criterion for each method and
time step to ensure that as accurate as possible a solution was obtained. The results presented
are those for which a further reduction of the convergence criterion by an order of magnitude
led to a less than 1 per cent change in the solution accuracy. This degree of accuracy was
obtained with diHerent criteria for each method and each time step, ranging from 1× 10−4

for the P1 projection method with time step Qt=0:1 to 1× 10−9 for the iterative method at
time step Qt=0:003125. For the iterative method each integration of the Poisson pressure
correction equation was halted after 5ve iterations of the GMRES procedure, regardless of
the accuracy of the solution at that stage of integration. The divergence test is applied to the
iterative method after the momentum equations have been solved, and it was required that at
each time step at least two iterations of the momentum=pressure correction cycle were carried
out, regardless of the divergence after the 5rst solution of the momentum equations.
Figure 2 shows the streamfunction and temperature contours respectively for the natural

convection �ow at time t=2. The streamfunction contours show the recirculations that are
associated with each of the thermal boundary layers that form on the heated and cooled walls.
The �ow continues to develop from this stage with hot and cold intrusions ejected from the
boundary layers travelling across the horizontal boundaries and stratifying the interior of the
domain, and the two recirculations coalescing to form a single cavity scale recirculation.
Figures 3 to 5 contain the error plotted against the time step for the pressure, U-velocity

and temperature respectively, for the P1 projection, Perot, P2 pressure correction, Kim Moin,
explicit and iterative schemes. The pressure results include an order Qt line, while the other
results include order Qt and Qt2 lines to allow the order of accuracy of the error results to
be easily estimated.
All schemes have order Qt error for the pressure. The P2 pressure correction and itera-

tive schemes provide nearly identical results. The fully explicit and Perot methods provide
equivalent results to the P2 pressure correction once the time step is small enough. The Kim
and Moin scheme is apparently considerably less accurate than the iterative scheme, however
the pressure that is plotted is actually �. The full pressure, as given in Equation (18) in the
previous section, is also plotted for comparison and denoted Kim and Moin full pressure, in
the legend. This result is nearly identical to that of the P2 pressure correction result, and
very close to the iterative result. The pressure plotted for the P2 pressure correction was that
obtained using the simpler expression Equation (25). Results have also been obtained for the
P2 pressure correction full pressure, given in Equation (24), however the results were not
discernible from the simple pressure results shown and are not included. Results obtained for
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Figure 2. (a) Streamfunction contours for the natural convection �ow at time t=2, with 10 equally
spaced contours between the maximum and minimum values of 2:3× 10−3 and −2:0× 10−5 respec-
tively. (b) Temperature contours for the natural convection �ow at time t=2, with 10 equally spaced

contours between the maximum and minimum values of 0.5 and −0:5 respectively.

Figure 3. Pressure error variation with time step for natural convection �ow.

the P2 pressure correction with Kim and Moin-type boundary conditions, as given in Equa-
tion (23), are almost identical to the standard pressure correction results. The P1 projection
method is approximately an order of magnitude less accurate than the iterative method, and is
the least accurate scheme. The P1 projection results shown were obtained using the simpli5ed
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Figure 4. U -velocity error variation with time step for natural convection �ow.

Figure 5. Temperature error variation with time step for natural convection �ow.

form of pressure, Equation (15). P1 projection results have also been obtained with the full
pressure, Equation (14), however these showed a proportionally small improvement and are
not shown.
For the U-velocity the P1 projection method is 5rst-order, while all other methods are

providing second-order in time accuracy. The Perot method is considerably less accurate than
the P1 pressure correction and Kim and Moin methods, which provide nearly identical results.
The diHerence between the P1 pressure correction and Kim and Moin methods and the more
accurate iterative method is about a factor of 5ve times and is a result of the second-order
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Figure 6. Timing results for natural convection �ow.

error given in Equations (16) and (22). This error is converted to third-order for the P2
pressure correction method by including Kim and Moin-type boundary conditions as shown
in Equation (23), and the P2 pressure correction method is then seen to give identical results
to the iterative method. The explicit method provides results marginally less accurate than the
iterative method once the time step is small enough. Results for the V-velocity, which for
brevity are not included, show identical behaviour to those for the U-velocity.
Results for the temperature show similar behaviour to the velocity components, with the

P1 projection method giving 5rst-order accuracy and all other methods second-order. Both
the P2 pressure correction methods and the Kim and Moin method are almost identical to
the iterative method, indicating that the error in the velocity 5elds has only a small eHect on
the temperature. The explicit scheme is approximately a factor of two less accurate than the
iterative method, while Perot’s method is about an order of magnitude less accurate.
Results have also been obtained using the maximum variation between the trial and bench-

mark solutions as the error measure, and this maximum norm showed exactly the same be-
haviour as that observed for the L2 norm. The pointwise error has also been examined at 5ve
locations. The points considered were at half the cavity height at x=0:04; 0:10; 0:15; 0:25; 0:35,
thereby spanning the boundary layer and cavity interior adjacent to the left hand wall. Again
the pointwise error showed exactly the same behaviour as the L2 norm, with the exception
that at the interior points no temperature error was observed, as is to be expected.
Run times have been obtained for each of the methods, and are presented in Figure 6. The

timings are processor times obtained running in double precision on a DEC 3000-700, and
are shown as CPU time in seconds on the horizontal axis. The error for each method is the
average of the velocity and temperature errors at each of the time steps for which results were
obtained, and is shown on the vertical axis. Presenting the results in this form means that it
is possible to compare the CPU time required for each method to achieve a given accuracy,
and thus to assess the comparative e;ciency of each method.
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It is clear that the P1 projection and Perot methods are both relatively ine;cient. The
P2 pressure correction, Kim and Moin and explicit methods provide approximately the same
e;ciency, and are all more e;cient than the iterative method. The most e;cient method is
the P2 pressure correction with Kim and Moin boundary conditions.
Results have also been obtained for natural convection �ow with a Rayleigh number

Ra=6× 108. The results were obtained on a non-uniform grid of 100× 100 nodes, with
a mesh size of 2× 10−3 at the walls, and an expansion ratio of 7 per cent moving away
from the walls. Solutions were obtained for time steps of Qt=5× 10−3; Qt=2:5× 10−3

and Qt=1:25× 10−3. The solutions were compared to a benchmark solution obtained with
Qt=3:125× 10−4 at times t=0:2 and t=20. The t=0:2 results corresponds approximately
to that shown above for the lower Rayleigh number, with the boundary layers then close to
full development. By t=20 the intrusions have crossed the cavity, striking the far wall, and
the process of 5lling the cavity interior with strati5ed �uid has begun. For the t=0:2 case
the high Rayleigh number results produced identical behaviour to that observed at the lower
Rayleigh number. The convergence with respect to the time step for the modi5ed P1 projec-
tion, P2 pressure correction and iterative methods was second-order for the temperature and
velocities for the L2 norm, the maximum norm and pointwise across the boundary layer and
cavity, while the pressure convergence was 5rst-order. The P1 projection method had 5rst-
order accuracy for all 5elds. The t=20 result also produced generally the same behaviour,
with the P1 projection method 5rst-order and all other methods second-order, however in this
case the P2 pressure correction, Kim and Moin and the iterative methods produced nearly
identical accuracy. The smaller variation in performance of the methods for the longer inte-
gration indicates that it is the early time solution that places the most stress on the solvers.
The scaling analysis developed by Patterson and Imberger [19] showed that the smallest time
scale associated with the development of this �ow is that of the initial thermal boundary layer
growth and thus it reasonable to expect that it is this phase of the �ow that will most severely
test the solvers, as has been observed.

3.2. Driven cavity

The driven cavity has frequently been used as a benchmark test for incompressible Navier–
Stokes solvers [20]. Initially the �uid in the square cavity is quiescent. At time t=0 the
tangential velocity on the upper boundary is set to one, with the normal velocity on the upper
boundary set to zero, and the other boundaries no-slip. The control parameter is the Reynolds
number, which is set to Re=400, based on the height of the cavity and the tangential velocity
at the upper boundary. Solutions have been obtained on a 50× 50 uniform grid. Convergence
tests again showed that the variation between the 50× 50 solution and the solution obtained
on a 200× 200 mesh was less than 1 per cent, and the 50× 50 mesh is therefore considered to
provide a su;ciently accurate resolution. The solution is integrated in time from t=0 to t=2,
in non-dimensional units, for time steps ranging from Qt=2:5× 10−2 to Qt=3:125× 10−3.
Times have been non-dimensionalized by the height of the cavity and the tangential velocity
on the upper boundary. Again the error was quanti5ed by obtaining the L2 norm of the
diHerence of the test solution and a benchmark solution obtained with Qt=7:8125× 10−4

integrated for the same amount of time. Convergence criterion used for the driven cavity were
obtained in the same manner as for the natural convection �ow, and range from 1:0× 10−4

for the P1 projection method at Qt=2:5× 10−2 to 1:0× 10−7 for the iterative method at
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Figure 7. Streamfunction contours for the driven cavity �ow at time t=2, with 10 equally spaced
contours between the maximum and minimum values of 0.0539 and 0.0 respectively.

Qt=3:125× 10−3. Again the largest time step, Qt=2:5× 10−2, is near to the empirically
obtained stability limit of Qt=2:0× 10−2. For this �ow the Perot method had approximately
the same stability behaviour as the other methods while the explicit method, which was less
stable, was limited to a maximum time step of Qt=1:25× 10−2.
Figure 7 shows the streamfunction contours for the driven cavity at time t=2. Flow at

the top boundary of the cavity is from left to right, and a recirculation has formed beneath
the top boundary, with its centre located near to the downstream end. As the �ow continues
to develop the centre of the recirculation shifts towards the centre of the cavity, the �ow
becomes much stronger in the lower region, and small reverse recirculations develop in the
bottom right and left corners.
Figures 8 and 9 contain the errors for the pressure and U-velocity component for the P1

projection, Perot, P2 pressure correction, Kim and Moin, explicit and iterative schemes. First-
order accuracy for the pressure is obtained with all methods. The P1 projection method is the
least accurate by approximately an order of magnitude, while the Kim and Moin method is
a factor of two less accurate than the most accurate result. All other schemes provide nearly
identical results. Again the apparent lower accuracy of the Kim and Moin scheme is obtained
only with the incomplete pressure, when the full pressure is calculated it is almost identical
to the other accurate results. Full pressure results for the P1 projection method showed a
small improvement, while no discernible variation was observed in the full pressure results
for the P2 pressure correction method, these results are not shown. Results obtained with the
P2 pressure correction method with Kim and Moin boundary conditions were almost identical
to the standard method and are not shown.
Results for the U-velocity show the P1 projection method is 5rst-order accurate while

all other methods are second-order. Perot’s method is the least accurate of the second-order
methods, by approximately an order of magnitude, while the explicit method is, by a small
margin, the most accurate. The P2 pressure correction, Kim and Moin and iterative methods
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Figure 8. Pressure error variation with time step for driven cavity �ow.

Figure 9. U -velocity error variation with time step for driven cavity �ow.

are providing nearly identical results. Results obtained with the P2 pressure correction method
with Kim and Moin boundary conditions were again almost identical to the standard method
and are not shown. Results for the V-velocity are similar to the U-velocity and for brevity
are not shown.
Results have also been obtained for the driven cavity using the maximum variation between

the trial and benchmark solution as the error measure, and this maximum norm showed exactly
the same behaviour as that observed for the L2 norm. The pointwise error has also been
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Figure 10. Timing results for driven cavity �ow.

examined at the locations given above for the natural convection �ow, and again showed
exactly the same behaviour as the L2 norm.
Run times versus error for each of the methods for the driven cavity are presented in

Figure 10. The error is the average of the U-velocity and V-velocity errors, and the run
time is in CPU seconds. The least e;cient scheme is the P1 projection method, while the
P2 pressure correction and Kim and Moin schemes provide a similar e;ciency. For very
small errors the explicit scheme is the most e;cient. The Perot and iterative schemes have
approximately equivalent e;ciency, lying between the P1 projection and the other methods.
Results have also been obtained for driven cavity �ow with a Reynolds number Re=5000.

The results were obtained on the same non-uniform grid as that used for the high Rayleigh
number natural convection �ow, and described above. Solutions were obtained for times steps
of Qt=2:5× 10−3; Qt=1:25× 10−3 and Qt=6:25× 10−4. The solutions were compared to
a benchmark solution obtained with Qt=1:5625× 10−4 at time t=0:05. The high Reynolds
number results had an identical behaviour to those obtained at the lower Reynolds number.

3.3. Zero shear boundary

The methods have been tested for a zero shear boundary by obtaining results for symmetric
duct �ow. In this case the domain has an aspect ratio of 10 (length=height) and the control
parameter is the Reynolds number, set to Re=40, based on the domain height and the inlet
velocity. A 5xed uniform non-dimensional horizontal velocity of 1.0 and vertical velocity of
0.0 are speci5ed at the left hand boundary inlet, the bottom boundary has zero velocity, the
upper boundary zero tangential shear and zero normal velocity and the right hand out�ow
boundary zero streamwise velocity derivatives. The upper boundary therefore lies on the cen-
tral symmetry line for a symmetric duct �ow. Initially the �uid is quiescent with the inlet
boundary condition impulsively enforced at time t=0 and the �ow allowed to develop.
The domain has been discretized with a uniform 50× 50 grid and results have been ob-

tained for time steps in the range Qt=5:0× 10−5 to 1:28× 10−2 and compared to benchmark
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Figure 11. Streamfunction contours for the duct �ow at time t=0:0512, with 10 equally spaced contours
between the maximum and minimum values of 0.0 and −0:098 respectively.

Figure 12. Pressure error variation with time step for duct �ow.

results obtained for Qt=1:25× 10−5, all integrated from t=0:0 to t=0:0512. The maximum
time step of 1:28× 10−2 is close to the empirically obtained stability limit of 2:0× 10−2. Con-
vergence criterion used for the duct �ow were obtained in the same manner as for the natural
convection �ow, and range from 1:0× 10−5 for the P1 projection method at Qt=1:28× 10−2

to 1:0× 10−8 for the iterative method at Qt=5:0× 10−5. The stability limit for Perot’s method
was Qt=3:2× 10−3 and for the explicit method Qt=1:6× 10−3.
Figure 11 shows the streamfunction contours for the duct �ow time t=0:0512. The inlet

boundary is at the left. Initially the �ow is uniform and all streamfunction contours are
horizontal. As the �ow develops, the non-slip boundary on the bottom has led to the formation
of a boundary layer region causing the streamfunction contours to curve upwards, as seen in
the 5gure.
Figures 12 and 13 contain the errors for the pressure and U-velocity component for the P1

projection, Perot, P2 pressure correction, Kim and Moin and iterative schemes. The scheme
denoted as Kim and Moin uses the incorrect tangential shear boundary condition, given in
Equation (17), while the scheme using the correct tangential shear boundary condition is
labelled Kim and Moin correct. For the pressure all methods are exhibiting non-asymptotic
behaviour for the larger time steps, with the Kim and Moin method showing an improvement
in accuracy with increasing time step. However, once the time step is small enough all
schemes are 5rst-order in time, with the Kim and Moin method the least accurate by an
order of magnitude in the asymptotic region. All other methods, including the Kim and Moin
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Figure 13. U -velocity error variation with time step for duct �ow.

correct, provide approximately equivalent accuracy. For the duct �ow no discernible variation
is obtained by using the full pressure for any of the methods, or the P2 pressure correction
with Kim and Moin boundary conditions, and these results are not shown.
The U-velocity results show both the P1 projection and Kim and Moin methods to be

5rst-order once the solutions become asymptotic, with the Kim and Moin the least accurate.
All other methods are second-order with the P2 pressure correction, Kim and Moin correct
and iterative methods giving almost identical results. The explicit results lie on approximately
the same line as the iterative results but require a very small time step for stability. The Perot
method is considerably less accurate than the other second-order methods. The V-velocity
results are similar to the U-velocity results and for brevity are not shown.
Results have also been obtained for the duct using the maximum variation between the trial

and benchmark solutions as the error measure, and this maximum norm showed exactly the
same behaviour as that observed for the L2 norm. The pointwise error has also been examined
and again showed exactly the same behaviour as the L2 norm.
Run times versus error for each of the methods for the duct are presented in Figure 14.

The error is the average of the U-velocity and V-velocity errors, and the run time is in CPU
seconds. The least e;cient scheme is the iterative method. It is di;cult to distinguish a
single most e;cient scheme; however, the P2 pressure correction and Kim and Moin correct
schemes are consistently e;cient over a range of errors. The explicit scheme is most e;cient
for very small errors, while for large errors the Kim and Moin method performs well. The
Perot method is very ine;cient for the largest time step considered, but for the other time
steps performs well. The ine;ciency at the largest time step is due to the marginal stability of
the Perot method at that time step, requiring many more iterations of the GMRES solver for
the pressure correction equation to achieve a converged solution. This meant that the largest
time step considered required a greater CPU time than the next smaller time step, leading to
the dog-leg behaviour of the e;ciency curve for the Perot results.
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Figure 14. Timing results for duct �ow.

Results have also been obtained with the Reynolds number Re=400 for the same grid and
time steps used for the lower Reynolds number. The high Reynolds number results produced
identical behaviour to that observed at the lower Reynolds number.

4. DISCUSSION

The use of the P1 projection method with standard boundary conditions and an implicit-in-
time discretization for the viscous terms means that the divergence-free velocity obtained after
the projection step will not in general satisfy the momentum equations. The error obtained
when the projected velocity 5eld is substituted back into the momentum equations cannot,
in discrete form, be expressed as the gradient of a scalar, and therefore cannot be absorbed
into the pressure or otherwise removed. The analysis presented in Section 2 indicates that
this error will be 5rst-order in time, and that the order of this error is not related to the time
accuracy of the scheme used to integrate the momentum equations. It is therefore expected
that the P1 projection method with an implicit-in-time discretization for the viscous terms will,
in practice, exhibit only 5rst-order convergence with respect to the time step. This expected
5rst-order behaviour has been con5rmed by carrying out a direct accuracy analysis using the
P1 projection method for natural convection, driven cavity and duct �ows.
The iterative method provides an exact solution to the discretized Navier–Stokes equations,

at least to the accuracy with which the system has been inverted. This scheme is therefore
expected to exhibit the same time accurate behaviour as that with which the momentum
equations have been solved. Results obtained with this method have shown that in practice
it is second-order in time, as expected. The potential drawback of this approach is that it
may require a large number of iterations at each time step, and therefore may potentially
be ine;cient. The iterative method represents the best solution that can be obtained with
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the non-iterative schemes that attempt to solve the same discrete equation set, any diHerence
between the iterative solution and the solution obtained with the non-iterative schemes is a
result of the projection error, that is the error that results when the corrected velocity 5eld is
substituted back into the discrete momentum equations.
Perot recognized this 5rst-order projection error as a commutation error and suggested a

means to remove it in the context of an LU factorization scheme, requiring no modi5cation to
the boundary conditions. Perot’s suggestion has been used here with the fractional step pro-
jection method, but still required that special boundary conditions be applied to the additional
term introduced into the velocity correction. The resulting modi5ed projection method was
found to be second-order in time, although for all the �ows tested it is the least accurate of
the second-order methods. Perot also suggested a more accurate modi5cation to the standard
projection method that reduces the projection error to third-order, however that scheme led
to a very large computational molecule and complex boundary conditions when implemented
with the fractional step approach, and was therefore not tested.
Kim and Moin recognized the 5rst-order projection error as an error in the boundary con-

ditions of the ∗ velocity 5eld, and derived a modi5ed boundary condition for 5xed velocity
boundaries that makes the scheme overall second-order in time. In this paper it has been
shown that both Perot and Kim and Moin are correct in their analysis of the projection error,
it is a commutation error, as noted by Perot, and it does occur at the boundary and can be
removed by modifying the ∗ velocity boundary condition, as noted by Kim and Moin. It has
also been shown in this paper that the modi5ed Kim and Moin boundary condition need only
be applied to the tangential component of the ∗ velocity 5eld. The Kim and Moin method
does not entirely eliminate the projection error, rather the 5rst-order error is replaced with a
second-order error. This error depends on the time rate of change of spatial gradients of the
pressure 5eld, and in �ows where these are signi5cant, such as the natural convection �ow,
the velocities obtained with the Kim and Moin method are less accurate than the iterative
scheme by up to a factor of 5ve. In the driven cavity �ow there is only a small diHerence
between the Kim and Moin scheme and the iterative results.
The Kim and Moin results for the duct �ow show that some care must be taken with the

application of the modi5ed boundary conditions. The duct �ow includes a zero tangential
shear boundary and Kim and Moin did not derive a modi5ed boundary condition for this
case. A naive application of the 5xed velocity boundary condition results in a scheme that is
5rst-order, whereas a proper analysis of the error shows that for this case no modi5cation is
required on the zero shear boundary. Using this approach, with Kim and Moin conditions on
the other boundaries, the scheme is second-order with only a very small diHerence between
it and the iterative results. A proper derivation of the zero shear boundary condition in the
manner given in Kim and Moin also shows that no modi5cation is required on this boundary.
It is clear using this approach that appropriate modi5ed boundary conditions must be derived
for each physical velocity boundary condition.
The P2 pressure correction method has been shown to have a similar second-order projection

error to that of the Kim and Moin scheme, and this is re�ected in the results where there
is only a very small diHerence in the velocity error between the two schemes, provided the
correct Kim and Moin boundary condition is used for the duct �ow. The advantage of the
pressure correction method is that this degree of accuracy is obtained without any modi5cation
to the basic scheme. For the natural convection �ow the pressure correction velocity results
are up to a factor of 5ve less accurate than the iterative results, as for the Kim and Moin
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results, and this variation is a result of the second-order error term given in Equation (22).
This term may be modi5ed to a third-order in time error by using the Kim and Moin boundary
conditions, but with the pressure correction �, rather than with the simple pressure �. This
modi5ed pressure correction method produces identical results to the iterative method for the
natural convection �ow. A similar modi5cation could easily be developed for the Kim and
Moin method, requiring only that �n+1 − �n be obtained and stored.

Results have also been obtained using a fully explicit projection method. In this scheme
there is no projection error and thus the results are expected to be of comparable accuracy to
those of the iterative method. This has been shown to be the case for all the �ows with the
explicit scheme slightly less accurate for the natural convection �ow, slightly more accurate
for the driven cavity, and almost identical for the duct �ow. The behaviour of the explicit
scheme provides further support for the hypothesis that the 5rst-order behaviour of the basic
projection method is a result of the 5rst-order projection error.
A scheme similar to Issa’s PISO scheme [14] has also been tested. This method is identical

to the P2 pressure correction method, but with two iterations of the momentum=pressure
correction equation system being made at each time step. Tests have shown that the two
iteration scheme takes between 60 and 90 per cent more computation time per time step than
the single iteration P2 pressure correction scheme. For both the driven cavity and the duct �ow
the P2 pressure correction method is already providing equivalent accuracy to the iterative
scheme. Using two iterations of the P2 pressure correction scheme leads to no improvement
in the accuracy and therefore reduces the e;ciency. For the natural convection �ow the
iterative scheme improves the accuracy by approximately a factor of 5ve compared to the
P2 pressure correction scheme. Using two iterations of the P2 pressure correction scheme
provided very close to the same accuracy as the iterative scheme. For the larger time steps
the iterative scheme ran with up to 16 iterations for the smallest convergence criterion, while
for the smallest time step and largest convergence criterion only two iterations per time step
were carried out, which was the minimum allowed. The results obtained with a two iteration
P2 pressure correction scheme show that close to optimum accuracy can be obtained for
the natural convection �ow with only two iterations, however the increase in computation
time required for the second iteration to be carried out means that no substantial increase in
e;ciency is obtained even in this case.
It has also been observed in the results section that for all the methods tested, and irrespec-

tive of the accuracy of the velocity 5elds, and the temperature 5eld for the natural convection
�ow, the pressure is always only 5rst-order in time. Perot [7] demonstrated that for segre-
gated Navier–Stokes solvers it is not possible to obtain better than 5rst-order accuracy for
the pressure 5eld as a result of an order Qt diHerence between the source terms for the true
pressure equation, obtained by taking the divergence of the momentum equations, and for the
pressure or pressure correction equation, obtained by taking the divergence of the ∗ velocity
5eld.
The diHerence between the simple pressure, that is � for the P1 projection and Kim and

Moin methods and the pressure corrected using only � for the P2 pressure correction method,
and the full pressure obtained using Equations (14) and (18) for the P1 projection and Kim
and Moin methods respectively and Equation (24) for the P2 pressure correction method,
has also been investigated. For the P2 pressure correction method the diHerence between the
simple and full pressure is second-order in time, and this makes only a very small diHerence
to the pressure 5eld which is itself only 5rst-order accurate. This is re�ected in the very
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small diHerence between the P2 pressure correction pressure and the iterative pressure for
all the �ows examined. Obtaining the full pressure improved the accuracy of the Kim and
Moin pressure prediction considerably, resulting in an equivalent accuracy to the P2 pressure
correction method and only a very small diHerence with the iterative result. Using the full
pressure with the P1 projection method also improves the accuracy of the pressure by a similar
amount to that obtained with the Kim and Moin method, however as the P1 projection method
� is considerably less accurate than that of the Kim and Moin method, the same improvement
in accuracy leads to a proportionally smaller change and the P1 projection full pressure is
still less accurate than � obtained with the Kim and Moin method.
Empirical tests have been carried out and show that all the schemes are conditionally stable,

with the stability dependent on the CFL number. For all schemes the maximum CFL number
attainable was approximately 1.0 when based on interior velocity values. Results for the driven
cavity have been obtained with a CFL number greater than 1.0 based on the tangential top
boundary velocity. However, the large vertical gradient of horizontal velocity in this region
means that the horizontal velocity at the immediate interior node is considerably reduced,
and the CFL number based on that velocity is less than 1.0 for the largest time step. Both
the Perot and explicit methods were considerably less stable than the other schemes. For the
duct �ow the maximum time step attainable for Perot’s scheme was 1=16 that of the more
stable schemes, while for the explicit scheme the maximum attainable timestep was 1=32. This
reduction in stability was noted by Perot, and attributed to a reduction in the positive de5nite
nature of the scheme. The explicit method requires that an additional stability constraint be
satis5ed associated with the diHusion terms, and this can be considerably more restrictive than
that associated with the advective terms. It is for this reason that schemes with an implicit
discretization of the viscous terms are commonly used.
Overall the iterative scheme is the most accurate of those tested, in the sense that for a

given time step the error is the smallest. To determine which of the schemes is the most
e;cient it is necessary to consider the computational eHort that must be expended to obtain
that accuracy. When such a comparison is made the iterative scheme is not the most e;cient.
For all the �ows tested the P2 pressure correction and Kim and Moin schemes are more
e;cient than the iterative scheme, and have approximately equivalent e;ciency. The explicit
scheme is also e;cient for small time steps but due to its relative instability it has a limited
applicability. The P1 projection method and Perot’s method are relatively ine;cient for the
natural convection and driven cavity problems, although for the duct �ow they are equivalent
to the P2 pressure correction and Kim and Moin methods, at least for the smaller time steps
for the Perot scheme. The early time natural convection cavity �ow is apparently the most
complex problem in the sense that it demonstrates the greatest variation between the schemes,
and for that �ow the P2 pressure correction method with Kim and Moin type boundary
conditions is clearly the most e;cient, and since it has equivalent e;ciency to the basic P2
pressure correction method for the other �ows, overall this is the most e;cient scheme.

5. CONCLUSIONS

The P1 projection method, in which the pressure is not included in the momentum equations
and with the viscous terms diHerenced using an implicit in time approach, with standard
boundary conditions, is 5rst-order in time, regardless of time accuracy of the momentum
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solver. The 5rst-order in time error results from the coupling of the implicit viscous term and
�, used to project the ∗ velocity onto a divergence-free solution.
Perot’s method includes a correction to remove the commutation error of the standard

method. Implementation of this method within the fractional step context requires special at-
tention to the boundary conditions of the additional correction term. With appropriate bound-
ary conditions the modi5ed scheme exhibited second-order in time accuracy, however this
approach was the least accurate of the second-order schemes.
An alternative method of removing the projection error by de5ning modi5ed conditions

for the tangential ∗ velocity 5eld was suggested by Kim and Moin. This method converts
the 5rst-order projection error into an equivalent second-order term, eHectively making the
overall scheme second-order. The remaining error term means that for �ows with complex
time changing pressure 5eld the Kim and Moin method is still considerably less accurate than
the iterative scheme. Similarly the use of the simple form of pressure can lead to signi5cant
errors in the pressure 5eld that are largely removed by using the full form of the pressure.
The use of a P2 pressure correction method, in which the previous time level pressure

is included in the momentum equations, leads to a second-order in time method. The error
that results from the coupling of the viscous terms and � is still present, but as � is a
pressure correction term which goes like Qt, the order of the error is Qt2. The error term is
similar to that of the Kim and Moin method and the schemes have equivalent performance
except with regard to the pressure accuracy. Use of the simple pressure with the pressure
correction method adds a second-order error into the pressure 5eld, and this was negligible
for all the �ows considered. The second-order accuracy of the pressure correction method is
achieved without any special attention to the boundary conditions and this is considered to be
a signi5cant advantage of this scheme. Use of Kim and Moin-type boundary conditions with
the P2 pressure correction method reduces the projection error to third-order and provides
solutions of equivalent accuracy to those of the iterative method. This modi5ed P2 pressure
correction method was the most accurate of the non-iterative semi-implicit schemes.
The P2 pressure correction method with Kim and Moin boundary conditions was the most

e;cient of the schemes tested. The standard P2 pressure correction and Kim and Moin method
have similar performance and are second in e;ciency to the modi5ed P2 pressure correction
method. The P1 projection and Perot methods are overall the least e;cient of those tested,
while the e;ciency of the iterative method lies between the P1 projection and Perot methods
and the Kim and Moin and pressure correction methods.
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